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Abstract

Recovering 3D geometry from a single 2D line draw-

ing is an important and challenging problem in computer

vision. It has wide applications in interactive 3D model-

ing from images, computer-aided design, and 3D object re-

trieval. Previous methods of 3D reconstruction from line

drawings are mainly based on a set of heuristic rules. They

are not robust to sketch errors and often fail for objects that

do not satisfy the rules. In this paper, we propose a novel

approach, called example-based 3D object reconstruction

from line drawings, which is based on the observation that

a natural or man-made complex 3D object normally con-

sists of a set of basic 3D objects. Given a line drawing,

a graphical model is built where each node denotes a ba-

sic object whose candidates are from a 3D model (exam-

ple) database. The 3D reconstruction is solved using a

maximum-a-posteriori (MAP) estimation such that the re-

constructed result best fits the line drawing. Our experi-

ments show that this approach achieves much better recon-

struction accuracy and are more robust to imperfect line

drawings than previous methods.

1. Introduction and Related Work

A line drawing is a 2D projection of the wireframe of a

3D object. Reconstructing a 3D object from a 2D line draw-

ing is an important and challenging task in computer vision.

The applications of this work include: interactive 3D mod-

eling from images [5], [9], [11], a flexible 2D sketch query

interface for 3D object retrieval [3], [10], a user-friendly in-

terface in CAD systems where a designer can sketch a 2D

line drawing of a 3D model on paper or on the screen of a

tablet PC [15], [19], and automatic 3D database generation

from images with user sketches [1], [7].

Line drawing interpretation is one of the traditional top-

ics in computer vision. The earliest work is line label-

ing [6], [23]. It searches for a set of consistent labels such

as convex, concave, and occluding from a line drawing to

…...

A Database of 

3D Models

l1

l2

(a)

(c)

(d)

(b)

Figure 1. Illustration of example-based 3D reconstruction. (a) In-

put 2D line drawing. (b) Recovered 3D shape. (c) Separated 2D

line drawings. (d) A database of 3D models.

test its correctness and/or realizability, but line labeling it-

self cannot recover the 3D shape from a line drawing.

The main purpose of line drawing interpretation is to

reconstruct the 3D shape from a 2D line drawing. How-

ever, this reconstruction problem is intrinsically ill-posed

due to the missing of one dimension. In order to circum-

vent this ill-posed problem, some researchers develop in-

teractive methods that use additional information from the

user. In [9] and [12], parametric 3D models are used as ref-

erences for 3D reconstruction. In [21], a set of gestures is

provides by the user to indicate the geometric relationship

between parts. In [22], the user specifies parallelism and

perpendicularity of lines. Usually, these interactive methods

are only suitable for users with strong technical background

in 3D geometry. Besides, the interaction is often manually

intensive.

Rule-based automatic reconstruction from single 2D line

drawings is a popular approach and has been studied ex-

tensively. Since there are an infinite number of 3D objects

whose projections are the same line drawing, 3D object re-
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construction from a 2D line drawing is to find the most

plausible 3D object that is consistent with our visual system

on the 3D interpretation of the line drawing. Finding ap-

propriate rules for reconstruction greatly affects the recon-

structed result. In previous methods, heuristic rules summa-

rized from human visual perception are used to construct an

objective function, the 3D object is obtained by minimizing

this function [13], [14], [16], [17], [18], [24], [4]. One rule

is to force all the angles at the vertices of a line drawing to

be the same so that a 3D object can be inflated from the 2D

line drawing. Line parallelism is another rule that two paral-

lel lines in a 2D line drawing indicate that they are also par-

allel in 3D space. Other rules include face planarity, isom-

etry, polyhedron symmetry, line verticality, skewed facial

orthogonality, skewed facial symmetry, face perpendicular-

ity, corner orthogonality, etc. Although the previous meth-

ods obtain good results in their experiments, those heuristic

rules are not always satisfied in many cases. For example,

in Figure 1(a), although lines l1 and l2 are nearly parallel

in the line drawing, they are not parallel in 3D space. Be-

sides, imperfect line drawings or sketch errors often cause

the rules to be little useful, and there is no principled way

of tuning the parameters that balance the heuristic rules.

In this paper, we propose a novel automatic approach

called example-based 3D object reconstruction from line

drawings. As previous related works, we consider planar-

faced objects with all edges visible. The assumption in our

approach is that a complex 3D object can be separated into

simpler basic 3D models. This is true for most complex ob-

jects, especially man-made objects. For example, the 3D

object shown in Figure 1(b) can be divided into three parts,

two pentagonal prisms and one cuboid (see Figure 1(c)).

Based on this assumption, we build a database of basic 3D

models, as shown in Figure 1(d). A complex 2D line draw-

ing is first decomposed into multiple smaller line drawings

(Figure 1(c)), and multiple candidates (also called exam-

ples) are selected from the 3D model database for each

small line drawing. Then an undirected graphical model is

built where each node denotes a small line drawing. Based

on this graphical model, the 3D reconstruction is solved us-

ing a maximum-a-posteriori (MAP) estimation that selects

the best candidates (examples) so that the reconstructed re-

sult best fits the line drawing.

Compared with previous rule-based automatic methods,

our approach has the following advantages: 1) It does not

use any heuristic rules, and thus avoids the tuning of the

parameters that balance the rules. The parameter tuning can

be quite tricky; while they are suitable for one set of objects,

they may cause many failures for another set of objects. 2)

Our approach is more robust to sketch errors. The rules

in previous methods are based on the local information of

vertices and edges in a 2D line drawing, and imperfect line

drawings may render many rules useless. Our approach,

Figure 2. Two examples of 3D models in the database. (a) Cuboid.

(b) Frustum of pyramid.

however, is based on both the 3D models from a database

and a global optimization that chooses the best examples for

the reconstruction.

2. 3D Models in the Database

In this paper, a bold upper-case letter (say, X) denotes

the 3D coordinate of a point, and its 2D projection on the

line drawing plane is denoted by the corresponding bold

lower-case letter x. A 2D line drawing is represented by

L = ({xv}, G), where x
1,x2, . . . ,xm are the 2D coordi-

nates of the vertices of the line drawing, and G is an undi-

rected graph indicating that which two vertices are con-

nected. A recovered 3D shape from L is represented by

S = ({Xi}, G), where X
1,X2, . . . ,Xm are the 3D coor-

dinates of vertices.

We manually build a database of 3D models for re-

construction. To increase the generalization ability of the

database, the 3D shape of each model is controlled by a set

of parameters. For example, the shape of the model cuboid

is determined by three parameters: length a, width b and

height c (shown in Figure 2(a)).

We assume that the 3D coordinate of each vertex of a

model can be expressed as a linear function of a parameter

vector. Formally, if a model has m vertices and n param-

eters, there is a set of 3 × n matrices {A1, A2, . . . , Am}
such that the 3D Euclidean coordinate of the i-th vertex is

Ai
α, where α is an n-dimensional vector containing all the

parameters. For example, in the model frustum of pyramid

(see Figure 2(b)), vertex X
1 and vertex X

2 are represented

as:

X
1 =




2a
2b
0



 =




2 0 0 0 0
0 2 0 0 0
0 0 0 0 0



α, (1)

X
2 =




a+ c
b+ d
e



 =




1 0 1 0 0
0 1 0 1 0
0 0 0 0 1



α, (2)

where α = (a, b, c, d, e)⊤.

Each 3D model is defined by M = ({Av}, G), where

Av , v = 1, 2, . . . ,m, are the linear coefficient matrices de-

fined above andG is an undirected graph denoting its topol-

ogy. A 3D model represents a group of 3D objects. An
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Figure 3. Reconstruction procedure. (a) Inputted 2D line drawing. (b) Basic line drawings separated from (a). (c) 3D model candidates.

(d) Recovered 3D parts from the basic line drawings. (e) Final 3D object by combining the 3D parts together.

instance of this model is a 3D object S = ({Xi}, G) de-

termined by a parameter vector α, a 3D rotation matrix R,

and a 3D translation vector t, where the 3D coordinate of

the i-th vertex is X
i = RAi

α + t.

The current database contains 72 models. Since these

models are parameterized, so model corresponds to innu-

merous 3D variations, thus they can represent most of basic

3D shapes. If a line drawing has a part that the database

does not cover, our algorithm can automatically detect it

and then it is added to the database.

3. Example-Based Reconstruction

The procedure of our approach is shown in Figure 3.

First an input line drawing is decomposed into several ba-

sic line drawings (Figure 3(b)). Then for each basic line

drawing, a set of 3D models which have the same topology

as the basic line drawing are retrieved from the database

(Figure 3(c)). After that, the best fitted part model for each

basic line drawing, as well as corresponding parameters R,

t, and α are estimated (Figure 3(d)). The final object is ob-

tained by combining these small 3D objects, as shown in

Figure 3(e). More details of these steps are described as

follows.

Line drawing decomposition. We use the method pro-

posed in [17] to separate a complex line drawing into mul-

tiple simple ones.

Candidate 3D model generation. For each basic line

drawing Li = ({xv
i }, Gi), we find a set of candidate 3D

part models that share the same topology as Li. Specifi-

cally, for each part model M = ({Av}, G′), if Gi and G′

are isomorphic, thenM is a candidate forLi. We use the al-

gorithm in [8] to check whether two graphs are isomorphic.

Then for each basic line drawing Li, there are ni candidate

3D models: Mi,1, . . . ,Mi,ni
.

3D reconstruction. In this step, the best fitted part

model for each basic line drawing is selected, as well as

corresponding parameters R, t, and α.

3D part combination. The 3D coordinate of each vertex

of the combined 3D model is calculated as follows: if a

vertex only belongs to one 3D part, its 3D coordinate is the

coordinate in this part; if a vertex is shared by two or more

3D parts, its coordinate is the average of the corresponding

coordinates in these parts.

The key step of this algorithm is the 3D reconstruction.

We mainly focus on this step in the rest of this section.

3.1. Camera Model

In this paper, similar to most related work, orthogonal

projection is assumed, whose projection matrix is

K =

(
1 0 0
0 1 0

)
. (3)

Actually, our formulation in the next two sections is valid

for other projections such as perspective projection. Only

the inference in Section 3.4 needs to be changed if a differ-

ent projection is used.

3.2. Problem Definition

The task of the 3D reconstruction is to estimate the

shape of a 3D part corresponding to each basic line draw-

ing Li. We assume that each 3D part Si is determined

by a set of random variables qi = {ci, Ri,1, ti,1,αi,1, . . . ,
Ri,ni

, ti,ni
,αi,ni

}, where ni is the number of candidate

3D models for the i-th basic line drawing, ci is an ni-

dimensional indicator vector whose elements are defined as

ci(k) =

{
1, if the k-th candidate model is selected,
0, otherwise,

and Ri,k, ti,k and αi,k are the rotation matrix, the transla-

tion vector and the parameter vector for the k-th candidate

model, respectively. The final recovered 3D object is ob-

tained by combining these basic 3D objects together. Di-

rectly estimating qi from Li is an ill-posed problem, and so

the following two constraints are imposed:

1) Projection constraint. The projection of each 3D part

Si = ({Xv
i }, Gi) on the 2D line drawing plane should be

consistent with the corresponding decomposed line drawing

Li = ({xv
i }, Gi). Considering sketch errors in the 2D line

drawing, the 2D projections of the 3D object vertices X
v
i

need not be strictly equal to x
v
i , but as close to as possible.
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Figure 4. (a) Inputted 2D line drawing. (b) Decomposed basic

line drawings L1−5. (c) Graphical model of these line drawings.

Observed nodes L1−5 are marked by shadow.

2) Construction constraint. The common 3D vertices

of two neighboring 3D parts should be as close as possi-

ble. For example, in Figure 3(d), the bottom of S1 and the

top of S2 have four common vertices. Their corresponding

vertices should be as close as possible.

3.3. Undirected Graphical Model of Reconstruction

Given a line drawing L = {Li}, using the MAP estima-

tion, the best choice of {qi} should maximize the posteriori

probability P ({qi}|L) ∝ P (L|{qi})P ({qi}). To formulate

this probability, we assume there is a Markov property in

{qi} and build an undirected graphical model as shown in

Figure 4(c). Each observed node Li denotes a basic line

drawing Li and each latent node qi denotes the correspond-

ing 3D part Si. There are two kinds of edges in the graph-

ical model. One is the edge connecting Li and qi, which

ensures the projection constraint. The other is the edge con-

necting two neighboring 3D parts qi and qj , which ensures

the construction constraint. With this graphical model and

Markov property, we have P (L|{qi}) =
∏

i P (Li|qi) and

P ({qi}) = (
∏

i φi(qi))
(∏

(i,j)∈Ne ψi,j(qi, qj)
)

, where

Ne is the set of edges among {qi}, and φi(·) and ψi,j(·, ·)
are potential functions [2]. Then the posterior probability is

reformulated as

P ({qi}|L) ∝
∏

i

P (Li|qi) ·
∏

(i,j)∈Ne

ψi,j(qi, qj) ·
∏

i

φi(qi). (4)

Let E(Li|qi) = −logP (Li|qi), E(qi, qj) =
−logψi,j(qi, qj), and E(qi) = −logφ(qi). Then maximiz-

ing (4) is equivalent to

min
{qi}




∑

i

E(Li|qi) +
∑

{i,j}∈Ne

E(qi, qj) +
∑

i

E(qi)



 . (5)

The first term E(Li|qi) in (5) is the negative log likeli-

hood term corresponding to the projection constraint, which

is defined as

E(Li|qi) = λp

ni∑

k=1

(
ci(k)

∑

v∈Vi

||KX
v
i,k − x

v
i ||

2

)
, (6)
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E(L|qi) 11.54 1.86 1.75

E(qi) 1 3 5

E(L|qi)+E(qi) 12.54 4.86 6.75

Figure 5. (a) A 3D object. (b)–(d) Three 3D models. (e) An im-

perfect line drawing. (f)–(g) Best fitted results of the 3D models in

(b)–(d) to the line drawings in (e). The 2D line drawing is drawn

in red, and the best fitted results are drawn in bold. The table

shows the projection errors, the negative priors, and their sums

corresponding to the 3D models in (b)–(d).

where Vi is the set of vertices in the basic line drawing Li,

X
v
i,k = Ri,kA

v
i,kαi,k + ti,k is the 3D coordinate of the

vertex v after rotation and translation, λp is the weight for

this term,Av
i,k is the matrix of the candidate 3D modelMi,k

that corresponds to the vertex v, and x
v
i is the 2D coordinate

of the vertex v in the input line drawing.

The second term E(qi, qj) in (5) corresponds to the con-

struction constraint defined as

E(qi, qj) = λc

ni∑

k=1

nj∑

l=1


ci(k)cj(l)

∑

v∈Vi∩Vj

||Xv
i,k − X

v
j,l||

2


 ,

(7)

where λc is the weight for this term. Notice that λp and λc

are the only two parameters in this algorithm. Ideally the

vertices shared by two parts should have exactly the same

coordinates in these two parts, but here we only force them

to be as close as possible in order to tolerate sketch errors.

The third term E(qi) denotes the negative prior of qi.
Different 3D models should have different prior probabili-

ties. For example, the 3D shape shown in Figure 5(a) can be

represented by the 3D model cuboid shown in Figure 5(c)

with a = 2, b = 4, and c = 3, or be represented by frus-

tum of pyramid shown in Figure 5(d) by setting a = c = 2,

b = d = 4, and e = 3. However, human beings inter-

pret this object as a cuboid other than a frustum of pyramid,

meaning that cuboid has a higher prior probability. Accord-

ing to Gestalt psychology, one of the most influential the-

ories with a long history, asserts that human beings are in-

nately driven to perceive objects as simple as possible [20].

Therefore, it is reasonable to defineE(qi) by the number of
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Algorithm 1 Calculating the initial values of R, t and α

Initialization: Randomly generate initial value R(0), t
(0) and

α
(0); i← 0.

1. Fix R(i), find the optimal values of t and α by

solving





f ′

α
(R, t, α) = 0,

f ′

t(R, t, α) = 0,

t(3) = 0,

and assign the solution to t
(i+1) and α

(i+1).

2. Fix t
(i+1) and α

(i+1), and find the optimal value of R(i+1)

using the algorithm in [25].

3. If |f(R(i), t(i), α(i))−f(R(i+1), t(i+1), α(i+1))| < ǫ, then

i← i + 1 and go to step 1.

Return Ri+1, ti+1 and α
i+1.

parameters ηi,k in the model Mi,k as

E(qi) =

ni∑

k=1

ci(k)ηi,k. (8)

The negative prior term E(qi) ensures the robustness of

the algorithm. For example, given an imperfect line drawing

as shown in Figure 5(e), the best fitted model should be the

cuboid in Figure 5(c) as it has a small projection error and a

high prior. The model cube in Figure 5(b) cannot fit this line

drawing well as it has a large projection error although the

prior is high. The model frustum of pyramid in Figure 5(d)

is also a bad choice, because although it achieves an even

slightly smaller projection error, it has a low prior. If no

prior is considered, the model frustum of pyramid will be

selected and the resulted 3D object will overfit to the sketch

errors in the line drawing.

3.4. Inference in the Graphical Model

Finding the optimal solution to (5) is not a trivial prob-

lem, as it is subject to two non-convex constraints: the bi-

nary constraint ci(k) ∈ {0, 1} and the orthogonal constraint

R⊤
i,kRi,k = I3×3. Besides, the objective function is a six-

order polynomial. First, we relax the binary constraint to

be a continuous linear inequality constraint 0 ≤ ci(k) ≤ 1.

Then we design an alternative minimization algorithm to

solve the problem. Next, we first discuss how to find a good

initialization and then present the algorithm.

Initial value of ci. ci has the weights for the candidate

3D models. We simply give an equal weight for all the can-

didates, i.e., to set the initial value ci(k) to 1/ni, where ni is

the number of candidate models for the basic line drawing

Li.

Initial values of Ri,k, ti,k and αi,k. We calculate the

initial values of Ri,k, ti,k and αi,k in each candidate 3D

model (k = 1, 2, . . . , ni) corresponding to Li by minimiz-

ing a projection error:

min f(R, t,α) =
∑

v∈V

||K(RAv
α + t) − x

v||2,

subject to: R⊤R = I, (9)

where the subscripts i and k for R, Av , α and t, and the

subscript i for x
v and V , are omitted for conciseness, V is

the set of the vertices in Li, x
v denotes the 2D coordinates

of the vertices in Li, and I is the identity matrix.

Equation (9) is also minimized using an alternative min-

imization algorithm. The algorithm is summarized in Algo-

rithm 1. In step 1, when R is fixed, f(R, t,α) becomes a

quadratic function of t and α. Its minimal value is achieved

from the t and α that are the solution to the two partial

derivatives setting to 0. Notice that since the projection is

along the z-axis, the translation along the z-axis t(3) is ir-

relevant to the objective value f(·), where t(3) denotes the

third component of t. So it is set to 0. Then in step 2, we

fix t and α and update R using the method in [25], which

uses a gradient descent algorithm to find the minimizer of

a differentiable objective function subject to an orthogonal

constraint. Since the object value f(R, t,α) is decreasing

in each run, a convergence is always guaranteed. To achieve

a good initialization, Algorithm 1 runs multiple times, and

the best result is automatically selected as the initial value

for the following steps.

Initial values of translation along the z-direction. Af-

ter running Algorithm 1 for every candidate 3D model

Mi,k, we have initial ci, Ri,k, αi,k, ti,k(1) and ti,k(2),
i = 1, . . . , N , k = 1, . . . , ni, where N is the number of

decomposed line drawings, and ti,k(1) and ti,k(2) are the

first two components of ti,k. Then we use (5) to estimate

the initial ti,k(3) with these known ci, Ri,k, αi,k, ti,k(1)
and ti,k(2). Since the objective function in (5) is a quadratic

function of ti,k(3), the optimal solution is obtained by set-

ting its derivatives with respect to ti,k(3) to 0 and solving

the resulting linear equations.

Solution to (5). After initialization, the solution

to (5) is found as follows. For ease description, let

c̃ = (c1, . . . , cN ), R̃ = diag(R1,1, . . . , RN,nN
), t̃ =

(t1,1, . . . , tN,nN
) and α̃ = (α1,1, . . . ,αN,nN

), and denote

the objective function in (5) as g(c̃, R̃, t̃, α̃). Although g(·)
is a six-order polynomial, it is a quadratic function if any

three of c̃, R̃, t̃, and α̃ are fixed. Using this property, we

design an alternative minimization algorithm listed in Al-

gorithm 2. In step 1, by fixing R̃, t̃, and α̃, (5) becomes

a quadratic programming problem. In step 2, by fixing c̃,

t̃, and α̃, (5) becomes a problem of minimizing a quadratic

objective function with an orthogonal constraint. In step 3,

by fixing c̃ and R̃, (5) becomes a quadratic optimization

problem with no constraints and is analytically solvable by

setting the partial derivatives of the objective function with

5



Algorithm 2 Finding the optimal solution c̃, R̃, t̃, and α̃

Input: Initial values c̃
(0), R̃(0), t̃(0), and α̃

(0)
; i← 0.

1. Fix R̃(i), t̃
(i), and α̃

(i)
, and find c̃

(i+1) by solving the

quadratic programming problem:

min
c̃

g(c̃, R̃
(i)

, t̃
(i)

, α̃
(i))

subject to: 0 ≤ c̃ ≤ 1,

ni∑

k=1

ci(k) = 1.

2. Fix c̃
(i+1), t̃(i), and α̃

(i)
, and find R̃(i+1) by solving

min
R̃

g(c̃(i+1)
, R̃, t̃

(i)
, α̃

(i)),

subject to: R̃R̃
⊤ = I,

using the algorithm in [25].

3. Fix c̃
(i+1) and R̃(i+1), and find t̃

(i+1) and α̃
(i+1)

by solving

the linear equations:

{
g′

t̃
(c̃(i+1), R̃(i+1), t̃, α̃) = 0,

g′

α̃
(c̃(i+1), R̃(i+1), t̃, α̃) = 0.

4. If |g(c̃(i), R̃(i), t̃
(i), α̃

(i)) − g(c̃(i+1), R̃(i+1), t̃
(i+1),

α̃
(i+1))| < δ, then i← i + 1 and go to step 1.

Return c̃
(i+1), R̃(i+1), t̃(i+1), and α̃

(i+1)
.

respect to t̃ and α̃ to 0. Same as algorithm 1, the conver-

gence is always guaranteed. Since the total length of the

hidden variables is linear to the number of parts, the com-

putational efficiency of the algorithm does not decrease sig-

nificantly when a line drawing grows complex.

After solving (5) in the continuous relaxation version,

we obtain the binarized vector ci by setting its maximum

component to 1 and all the other components to 0.

4. Experiments

In this section, we demonstrate the effectiveness of our

example-based 3D (E3D) reconstruction algorithm on var-

ious line drawings. We also compare it with two state-of-

the-art methods, the plane-based optimization (PBO) in [16]

and the divide-and-conquer (DAC) in [17]. Both [16]

and [17] are rule-based reconstruction methods, and [17]

can handle most complex objects than other previous meth-

ods.

We first test our algorithm on all the line drawings in [17]

and find that it can reconstruct all the 3D objects success-

fully. Some line drawings in [17] are shown in Figure 6

(line drawings (a)–(d)), together with four new line draw-

ings (e)–(h). From the relatively simple line drawing (a),

all the three algorithms obtain good results. However, when

a line drawing becomes complex with sketch errors, DAC

0 0.005 0.01 0.015 0.02
0

10

20

30

variance of the Gaussian noise

R
M

S
A

 

 

E3D

DAC

PBO

0 0.005 0.01 0.015 0.02
0

0.02

0.04

0.06

variance of the Gaussian noise

R
M

S
E

 

 

E3D

DAC

PBO

Figure 7. Performance comparison among E3D, DAC and PBO

when different sketch errors are considered. All the line drawings

are scaled into a rectangle with its diagonal equal to 1.

and PBO often generate bad results. The reconstructed 3D

objects (b)–(h) in the last column of Figure 6 by PBO are

all failed. DAC performs better than PBO, but its results

(b)–(h) in the fourth column are distorted seriously (better

viewed on the screen from the colored faces of the objects).

In contrast, our algorithm E3D recovers much better objects

from all the line drawings (see the second and third columns

of Figure 6).

To further demonstrate the robustness of E3D over PBO

and DAC, we test the three algorithms on line drawings with

different levels of sketch errors. First, using AutoCAD,

we manually build the 3D objects corresponding to the line

drawings (b)–(h) in Figure 6. These objects are used as the

ground truth. Then we simulate the sketch errors by adding

Gaussian noise with zero mean and different variances to

the 2D coordinates of the vertices of the projected line draw-

ings from the ground truth. Finally, we compare the 3D ob-

jects reconstructed by the three algorithms with the ground

truth objects. Two measurements are used to judge the re-

construction accuracy. One is the root mean square of angle

differences (RMSA) between the ground truth object OG

and the reconstructed 3D object OR, defined as

RMSA(OG, OR) =

√√√√ 1

Na

Na∑

i=1

(θi
G − θi

R)2, (10)

where Na is the number of angles, each of which is made

by any two edges meeting at a vertex, and θi
G and θi

R are

the i-th angles from OG and OR, respectively. The second

measurement is the root mean square of Euclidean distances

(RMSE) of corresponding vertices inOG andOR. Note that

before computing RMSE(OG, OR), the reconstructed ob-

ject is aligned to OG such that RMSE(OG, OR) is mini-

mized. From Figure 7, we can see that E3D performs much

better than PBO and DAC. Even when the noise level is

strong, it still has small RMSA and RMSE. By the way, the
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Figure 6. Experimental results on a set of complex line drawings (a)–(h) with sketch errors. The second and third columns show two views

of the reconstructed objects by our algorithm E3D, the fourth column shows the objects recovered by DAC, and the last column shows the

objects recovered by POA. Different colors are used to denote the faces. The results are better viewed on the screen.

line drawings (b)–(h) in Figure 6 are those with Gaussian

noise of variance = 0.01 added.

In Figure 8, we show an application of our algorithm

to 3D modeling from single images. Given an image, the

user first sketches a line drawing along the visible edges and

roughly guessed hidden edges of the objects in the image,

as shown in Figure 8(b). Then the 3D shape is recovered

by E3D, as shown in Figure 8(c) and Figure 8(d). Our al-

gorithm is implemented in Matlab. On a PC with 2.4GHz

Core2 CPU, it takes 12 minutes for each line drawing, and

the initialization consumes the majority of the time.

Finally, it should be mentioned that it is possible that in

the 3D model database, there is no 3D model whose topol-

ogy is the same as a decomposed basic line drawing. For

example, for a 3D object that cannot be composed into sim-

ple topologies, like icosahedron or footballene, it has no

match in the database. However, in this case, we can still

use PBO to recover the 3D part from this line drawing, and

then merge this part with the other parts reconstructed by

E3D.

5. Conclusion and Future Work

We have proposed a novel example-based 3D recon-

struction algorithm to recover the 3D geometry from a 2D

line drawing. In this approach, a complex line drawing is
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(a) (b)

(c) (d)

Figure 8. 3D modeling from an image. (a) Input image. (b) A line

drawing sketched along the edges of the objects. (c) (d) Recovered

3D shape shown in two views.

first decomposed into multiple basic line drawings. Then

a graphical model is built where each node denotes a ba-

sic object whose candidates are from a 3D model database.

The 3D object is reconstructed using the MAP estimation.

Our experiments show that this algorithm performs much

bettern than two state-of-the-art algorithms.

Future work includes (i) the extension of this work to

dealing with objects with curved faces, (ii) 3D modeling

from single images when perspective projection is consid-

ered, and (iii) accelerating the inference step.

6. Acknowledgement

This work was supported by grants from Natural Sci-

ence Foundation of China (60975029, 61070148), Sci-

ence, Industry, Trade, Information Technology Commis-

sion of Shenzhen Municipality, China (JC200903180635A,

JC201005270378A, ZYC201006130313A), and Guang-

dong Province through Introduced Innovative R&D Team

of Guangdong Province 201001D0104648280.

References

[1] S. Agarwal, W. Waggenspack, et al. Decomposition

method for extracting face topologies from wireframe mod-

els. Computer-Aided Design, 24(3):123–140, 1992.

[2] C. Bishop. Pattern Recognition and Machine Learning.

Springer New York, 2006.

[3] L. Cao, J. Liu, and X. Tang. 3D object retrieval using 2D line

drawing and graph based relevance feedback. Proc. ACM

Multimedia, pages 105–108, 2006.

[4] L. Cao, J. Liu, and X. Tang. What the back of the object looks

like: 3d reconstruction from line drawings without hidden

lines. IEEE Trans. PAMI, 30(3):507–517, 2008.

[5] X. Chen, S. Kang, Y. Xu, J. Dorsey, and H. Shum. Sketch-

ing reality: Realistic interpretation of architectural designs.

ACM Transactions on Graphics, 27(2):11, 2008.

[6] M. Clowes. On seeing things. Artificial Intelligence, 2:79–

116, 1971.

[7] M. Cooper. Wireframe projections: physical realisability

of curved objects and unambiguous reconstruction of simple

polyhedra. IJCV, 64(1):69–88, 2005.

[8] D. Corneil and C. Gotlieb. An efficient algorithm for graph

isomorphism. Journal of the ACM, 17(1):51–64, 1970.

[9] P. Debevec, C. Taylor, and J. Malik. Modeling and render-

ing architecture from photographs: A hybrid geometry-and

image-based approach. Proc. ACM SIGGRAPH, pages 11–

20, 1996.

[10] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,

D. Dobkin, and D. Jacobs. A search engine for 3D models.

ACM Transactions on Graphics, 22(1):83–105, 2003.

[11] F. Han and S. Zhu. Bayesian reconstruction of 3d shapes

and scenes from a single image. Proc. IEEE International

Workshop on Higher-Level Knowledge in 3D Modeling and

Motion Analysis, pages 12–20, 2003.

[12] D. Jelinek and C. Taylor. Reconstruction of linearly parame-

terized models from single images with a camera of unknown

focal length. IEEE Trans. PAMI, 23(7):767–773, 2001.

[13] Y. Leclerc and M. Fischler. An optimization-based ap-

proach to the interpretation of single line drawings as 3D

wire frames. IJCV, 9(2):113–136, 1992.

[14] H. Lipson and M. Shpitalni. Optimization-based reconstruc-

tion of a 3D object from a single freehand line drawing.

Computer-Aided Design, 28(8):651–663, 1996.

[15] H. Lipson and M. Shpitalni. Correlation-based reconstruc-

tion of a 3d object from a single freehand sketch. Proc. ACM

SIGGRAPH courses, 2007.

[16] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization

for 3D object reconstruction from single line drawings. IEEE

Trans. PAMI, 30(2):315–327, 2008.

[17] J. Liu, Y. Chen, and X. Tang. Decomposition of complex

line drawings with hidden lines for 3d planar-faced manifold

object reconstruction. IEEE Trans. PAMI, 33(1):3–15, 2011.

[18] T. Marill. Emulating the human interpretation of line-

drawings as three-dimensional objects. IJCV, 6(2):147–161,

1991.

[19] M. Masry, D. Kang, and H. Lipson. A freehand sketching

interface for progressive construction of 3d objects. Proc.

ACM SIGGRAPH 2007 courses, 2007.

[20] S. Palmer. Vision Science: Photons to Phenomenology. The

MIT Press, 1999.

[21] A. Shesh and B. Chen. Smartpaper: An interactive and

user friendly sketching system. Computer Graphics Forum,

23(3):301–310, 2004.

[22] A. Shesh and B. Chen. Peek-in-the-pic: Flying through ar-

chitectural scenes from a single image. Computer Graphics

Forum, 27(8):2143–2153, 2008.

[23] K. Sugihara. Machine Interpretation of Line Drawings. The

MIT Press, 1986.

[24] Y. Wang, Y. Chen, J. Liu, and X. Tang. 3D reconstruction of

curved objects from single 2d line drawings. CVPR, 2009.

[25] Z. Wen and W. Yin. A feasible method for optimization with

orthogonality constraints. Technical report, Rice University,

2010.

8


